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A B S T R A C T   

Background: Emotions play a crucial role in human communication and affect all aspects of human life. However, 
to date, there have been few studies conducted on how movements under different emotions influence human 
brain activity and cortico-muscular coupling (CMC). 
New methods: In this study, for the first time, electroencephalogram (EEG) and electromyogram physiological 
electrical signals were used to explore this relationship. We performed frequency domain and nonlinear dy
namics analyses on EEG signals and used transfer entropy to explore the CMC associated with the emotion- 
movement relationship. To study the transmission of information between different brain regions, we also 
constructed a functional brain network and calculated various network metrics using graph theory. 
Results: We found that, compared with a neutral emotional state, movements made during happy and sad 
emotions had increased CMC strength and EEG power and complexity. The functional brain network metrics of 
these three emotional states were also different. 
Comparison with existing methods: Much of the emotion-movement relationship research has been based on 
subjective expression and external performance. Our research method, however, focused on the processing of 
physiological electrical signals, which contain a wealth of information and can objectively reveal the inner 
mechanisms of the emotion-movement relationship. 
Conclusions: Different emotional states can have a significant influence on human movement. This study presents 
a detailed introduction to brain activity and CMC.   

1. Introduction 

Emotion, the external manifestation of human physiological and 
psychological changes, is an important medium for human communi
cation and plays a central role in our daily lives. Different emotions have 
different effects on human cognition, decision-making, and action 
(James, 2011; Spence, 1995); therefore, it is important to fully under
stand the relationships between emotions and human activity. At pre
sent, there are many parameters that can be used to measure human 
emotions (Haag et al., 2004; Chanel et al., 2007), such as the galvanic 

skin response, which shows changes in skin electrical conduction when 
stimulated and is generally used as a measure of negative emotions; 
respiration rate, thought to be related to anger; and heart rate, thought 
to be associated with negative emotions, such as fear. Human emotions 
can also be measured using functional magnetic resonance imaging and 
electroencephalogram (EEG) data (Chanel et al., 2007). It is well known 
that emotion is the brain’s external response to psychological activity 
and that there is a close connection between emotion and the cerebral 
cortex. EEG, derived from physiological electrical signals, reflects 
neuronal activity in the brain. Although the spatial resolution of EEG is 
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not very high, it has a high temporal resolution, signal acquisition is very 
simple, and it is non-invasive and therefore does not cause any harm to 
the human body. Hence, it is very useful for measuring emotions 
(Campbell et al., 2010; Niemic et al., 2002; Ali et al., 2016). 

There is a close relationship between emotions and brain activity. 
Studies have shown that the power of the EEG alpha band is particularly 
important for studying emotions. Additionally, during emotion regula
tion, activity in the left and right hemispheres of the brain has been 
found to be different (Harmon-Jones, 2003). It has been proposed that 
this asymmetry in the frontal lobe is related to emotion, where positive 
emotion is associated with left frontal lobe activation, and negative 
emotion is associated with right frontal lobe activation (Balconi and 
Mazza, 2010; Waldstein et al., 2000; Wheeler et al., 1993; Davidson and 
Henriques, 2000). Schmidt et al. also discovered this asymmetry by 
studying the emotions induced by different types of music and demon
strated that frontal lobe activity gradually decreased in relation to fear, 
happiness, and sadness (Schmidt and Trainor, 2001). Keil et al. found a 
significant right-hemispheric preponderance in the gamma frequency 
bands associated with aversion (Keil et al., 2001). Although these 
studies have achieved significant results, most of the conclusions are 

associated only with the frontal lobe of the brain, ignoring the role of the 
entire brain during changes in emotion. However, the brain has a 
complex system of neurons in different areas, leading researchers to 
study the brain functional network. In the current study, a functional 
brain network was constructed to explore the emotion-movement rela
tionship, and specifically, changes in connections during different 
emotional states. Network topology properties were used as metrics to 
determine the differences between the networks. 

The relationship between emotions and human behavior is inextri
cable. Different emotions are thought to trigger specific biases that affect 
people’s behavior. The relationship between human behavior and 
emotion involves not only the synergy between brain regions, but also 
the interaction between brain regions and the peripheral nerves of 
related muscles, also defined as cortico-muscular coupling (CMC) 
(Cremoux et al., 2017). Transfer entropy is widely used in CMC analysis 
as a measure of bidirectional transmission between two time series. Gao 
et al. for instance, found that the coupling strength of electromyogram 
(EMG)→EEG in the affected side of stroke patients was greater than that 
of EEG→EMG (Gao et al., 2018). 

At present, emotion-focused research has primarily relied on EEG 

Fig. 1. Data processing workflow.  
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signals to classify emotions. However, few studies have combined 
emotions and movement to explore the relationship between them. This 
study aimed to use physiological electrical signals to determine changes 
in the cerebral cortex and between the cortex and muscles caused by 
emotional changes. It is common practice in emotion research to choose 
two extreme opposite emotions to study. Hou et al., for instance, found 
that pleasure and disgust had the highest accuracy when studying 
emotion classification (Hou et al., 2020). Therefore, in the current study, 
two opposite emotions were chosen (happy and sad), and a third state 
(neutral) was used for comparison. First, the power spectral density 
(PSD) was used to analyze EEG signals. Additionally, a nonlinear dy
namics analysis (sample entropy) was performed since the power 
spectrum analysis cannot be used to assess the nonlinear characteristics 
of EEG. To explore the relationship between EEG and EMG, we first used 
transfer entropy to measure the strength of CMC and then used mutual 
information to build a functional brain network and the knowledge of 
graph theory to quantitatively analyze its characteristics. Finally, the 
research results were discussed and summarized. The data processing 
method used in this study is shown in Fig. 1. 

2. Material and methods 

2.1. Subjects 

The subjects of this experiment were 24 healthy people (14 men and 
10 women, all right-handed) aged 23–27 years, who were all graduate 
students. None of the patients had a history of neurological or psychi
atric disease. All participants volunteered to participate in the experi
ment. Before the experiment, each subject was informed of the detailed 
experimental process and he/she signed an informed consent form. All 
experiments in this study complied with the ethical code of the Decla
ration of Helsinki and were approved by the local ethics committee. 

2.2. Experimental design 

Before the start of the experiment, we collected 180 movie clips 
meant to evoke neutral, happy and sad emotions, and then recruited ten 
volunteers (not experiment participants) to rate these clips. The 20 
neutral, 20 happy and 20 sad movie clips with the highest scores were 
selected, these video clips were extracted from the movies shown in  
Table 1, and each movie clip lasted for 20 s. The experiment was con
ducted in a quiet laboratory that was free from magnetic field and noise 

and was divided into three sessions according to emotion (neutral, 
happy, sad), each of which the subjects completed in turn. For each 
session, the subjects watched the corresponding video clips. While 
watching the videos, the subjects performed 15 grip strength trials (five 
with 5 kg, five with 10 kg, and five with 15 kg) and five no grip strength 
trials. In the detailed process, the subject sat in front of the computer 
screen, the screen played the corresponding video clips, and there were 
instructions on the upper right of the screen to prompt the subject to 
complete the corresponding action. At the beginning of the experiment, 
the corresponding video was played on the screen. To stimulate the 
emotions of the subjects, the subjects received instructions to grip or not 
to grip after 15 s of watching the video. The entire grip action lasted for 
5 s, and then the subject rested for 10 s before proceeding to the next 
trial. To ensure the synchronization of the gripping and watching of the 
video, our grip strength equipment was connected to the subject’s palm 
with a corresponding weight through a rope, so that the subject only 
needed to pull the weight through the grip when receiving the instruc
tion, without having to look away from the computer screen. After 
completing one of the emotion exercise sessions, the subject rested for 
20 min before beginning the next session. The entire process is illus
trated in Fig. 2. 

2.3. Signal processing 

EEG data from this experiment were collected using a 64 channel g. 
moblab mp-2015 EEG wireless acquisition instrument with a sampling 
frequency of 1000 Hz. EMG data were collected using the Delsys 
TrignoTM wireless EMG system with a sampling frequency of 2000 Hz. 
We collected EEG and EMG data for each trial, as shown in Fig. 1. EEG 
electrodes were placed according to the international 10–20 system. 
EEG data were collected from 19 channels (FP1, FP2, Fz, F3, F4, F7, F8, 
Cz, C3, C4, T7, T8, Pz, P3, P4, P7, P8, O1, and O2) and EMG data from 
four muscles (flexor digitorum superficialis, extensor carpi ulnaris, 
flexor carpi ulnaris, and extensor digitorum). Before data processing, the 
signal was filtered with a 50-Hz notch filter to eliminate the interference 
caused by the electrical power lines. We used the independent compo
nent analysis function in EEGLAB to eliminate the artifacts caused by 
muscle and eye movement (Delorme and Makeig, 2004), which was 
achieved by the adjusted plugin in EEGLAB (Mognon et al., 2011). 

2.4. Analysis methods 

2.4.1. Power spectral density 
The PSD of the EEG signals was calculated using the Welch method. 

The data were normalized to determine the relative PSD. 

2.4.2. Sample entropy 
Sample entropy, which was proposed by Richman et al. in 2000, is an 

improved algorithm based on approximate entropy (Richman and 
Moorman, 2000). It is a nonlinear index used to evaluate the 
self-similarity and complexity of a time series, with larger values indi
cating more complexity (Tang et al., 2015). 

The sample entropy of an EEG signal with N data is expressed as 
follows: 

SampleEn(m, r,N) = − ln
Bm+1(r)
Bm(r)

(1)  

where Bm(r) is the estimated probability of two sequences matching m 
points, with the embedding dimension m = 2, a similarity tolerance of 
0.25 SD (standard deviation of the EEG time series), and an EEG data 
length of 5000. 

2.4.3. Transfer entropy 
Transfer entropy, proposed by Schreiber in 2000 based on informa

tion entropy (Schreiber, 2000), is used to measure the directed 

Table 1 
20 happy, 20 sad and 20 neutral movie clips with the highest scores.  

Number Happy movie clips Sad movie clips Neutral movie clips  

1 Mr.Bean (2 clips) Hachi (2 clips) Masters In 
Forbidden City (2 
clips)  

2 Goodbye Mr. Loser (2 
clips) 

I Am Legend (2 clips) Chinese Garden (2 
clips)  

3 21 Jump Street (2 clips) Echoes Of The 
Rainbow (2 clips) 

china (2 clips)  

4 The Gods Must Be 
Crazy (2 clips) 

Titanic (2 clips) Peking Opera (2 
clips)  

5 The Naked Gun:From 
the Files of Police 
Squad! (2 clips) 

The Curious Case of 
Benjamin Button (2 
clips) 

KungQu Of 
Sexcentenary (2 
clips)  

6 La Grande vadrouille (2 
clips) 

One Flew Over the 
Cuckoo’s Nest (2 
clips) 

A Bite Of China (2 
clips)  

7 King of comedy (2 
clips) 

The Godfather: Part 3 
(2 clips) 

HeXi Corridor (2 
clips)  

8 The God of Cookery (2 
clips) 

Amour (2 clips) Legend Of Tang 
Empire (2 clips)  

9 Drunken Master (2 
clips) 

To Live (2 clips) A History Of Britain 
(2 clips)  

10 Kikujirô no natsu (2 
clips) 

Grave of the Fireflies 
(2 clips) 

Shakespeare 
Uncovered (2 clips)  
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Fig. 2. Design of the experiment: (a) In a trial, the subject watched the video for 15 s according to the instructions, then performed the grip or no grip task for 5 s, and 
rested for 10 s before the next trial; (b) the experiment was carried out in three sessions, with a rest period of 20 min between each session. There were 20 trials in 
each session (five with no grip strength, five with 5 kg, five with 10 kg and five with 15 kg). 
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information transmission between two random processes (Wibral et al., 
2014). Therefore, transfer entropy can also be used as a criterion for 
causality (Murari et al., 2015), usually for biological systems. 

For example, given two EEG signal time series X and Y of length T, 
where X = {x1, x2, ., xT} andY = {y1, y2, ., yT}, the transfer entropy 
TEY→X represents the amount of information transferred from Y to X. 
The formula is as follows: 

TEY→X =
∑

xn+τ ,xn ,yn

p(xn+τ, xn, yn)log
(

p(xn+τ, xn, yn)p(xn)

p(xn, yn)p(xn+τ, xn)

)

(2)  

where n is the discrete time index and τ is the prediction time. 

2.4.4. Mutual information 
Mutual information is an effective measure in information theory, 

which can be defined as the amount of information contained in one 
random variable about another random variable (Cover and Thomas, 
2005). Assuming that the probability distributions of the S channel and 
Q channel of the EEG signal arePs(s1), Ps(s2), .,Ps(sn) and Pq(q1),Pq(q2),.,

Pq(qn), the information entropy of S and Q can be expressed as follows: 

H(S) = −
∑

i
ps(si)log2ps(si) (3)  

H(Q) = −
∑

j
pq
(
qj
)
log2pq

(
qj
)

(4) 

The joint information entropy is as follows: 

H(S,Q) = −
∑

i,j
psq

(
si, qj

)
log2psq

(
si, qj

)
(5) 

The mutual information of S and Q is as follows: 

MI(S,Q) = H(S)+H(Q) − H(S,Q) (6)  

2.4.5. Node degree 
The node degree is one of the simplest and most important attributes 

of a network. It represents the number of edges passing through a node. 
The greater the node degree, the greater the role of the node in infor
mation transmission within the network. The degree of node i is defined 
as 

Di =
∑N

j=1
aij (7)  

2.4.6. Network efficiency 
Global efficiency is used to measure the integration capability of a 

network, specifically, the efficiency of network information trans
mission. It is the inverse of the average value of the shortest path, which 
is defined as follows: 

Eglobal =
1

n(n − 1)
∑

i∕=j∈N

1
lij

(8)  

2.4.7. Statistical analysis 
In this study, paired samples t-tests were used to evaluate significant 

differences in the data, with smaller p-values indicating a greater dif
ference. Further, 95% confidence intervals were selected, and the sta
tistical significance level was set at p < 0.05. 

3. Results 

3.1. Power spectrum density analysis 

In this section, we calculated the average PSD of the EEG data of all 
subjects. Fig. 3 shows the EEG power distribution map with 0.5–30 
frequency for the 19 channels. From the results, it can be seen that in the 
absence of grip strength, compared with the neutral session, the EEG 
power increased most in the left frontal lobe during the happy session; 
conversely, the EEG power increased the most in the right frontal lobe 

Fig. 3. Average PSD distribution according to emotion and grip strength; (a) no grip strength (b) 5 kg (c) 10 kg (d) 15 kg. The color scale represents the value of the 
relative PSD. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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during the sad session. When grip strength was added, the EEG power of 
all grip strengths increased in the right prefrontal lobe during the neutral 
session, and the same result was observed during the happy session; 
however, during the sad session, the EEG power of the F7 channel of the 
left frontal lobe increased significantly. According to the results for the 
three grip strengths, the EEG power increased with an increase in grip 
strength during all the sessions. 

3.2. Sample entropy analysis 

Fig. 4 shows the average EEG sample entropy topographic map for 
the 19 channels. As can be seen from the Figure, similar to the power 
spectrum density distribution, with the participation of only emotion, 
the sample entropy increased most in the left frontal lobe during the 
neutral session; conversely, the sample entropy increased the most in the 
right frontal lobe during the sad session. However, after adding grip 
strength, the sample entropy of the P4 channel increased significantly 
during all the sessions, and the sample entropy of the C3 channel 
increased during the happy session, while the sample entropy of the CZ 
channel increased during the sad session. In general, the grip strength 
under happy emotions caused a larger increase in the sample entropy of 
the left hemisphere, and the grip strength under sad emotion caused a 
larger increase in the sample entropy of the right hemisphere. Lastly, the 
increase in grip strength from 5 kg to 10–15 kg also led to an increase in 
sample entropy. 

3.3. CMC analysis 

Transfer entropy was used to measure CMC strength in this study.  
Fig. 5 shows the average transfer entropy values of all the subjects at 
different sessions. According to the results shown in graphs a, b, and c, 
compared with the neutral session, the transfer entropy in the happy and 
sad sessions for EEG→EMG was significantly higher (especially happy). 

According to the results shown in graphs d, e, and f, the transfer entropy 
in the happy and sad sessions for EMG→EEG was also higher than that in 
the neutral session. In addition, in the comparison of grip strength, 
except for no significant difference between 10 kg and 15 kg of the 
happy session in EMG→EEG, the grip strengths were significantly 
different. 

3.4. Functional brain network analysis 

In this study, we used mutual information to construct a functional 
brain network and analyze the influence of the emotion-movement 
relationship based on network metrics. The process was divided into 
three steps. First, the mutual information between the 19 EEG channels 
was calculated pairwise, thereby obtaining a 19× 19 adjacency matrix. 
Next, an appropriate threshold was selected and the elements greater 
than the threshold were replaced with “1,” indicating that there was a 
connection between the two nodes, and the elements less than the 
threshold were replaced with “0,” indicating that there was no 
connection between the two nodes. To binarize the adjacency matrix, it 
was very important to choose an appropriate threshold. We chose the 
cost efficiency (Ce) threshold (th) as 

th = max{Ce} = max
{

Eg − D
}

(9)  

where D is the network density, which is defined as the ratio of the actual 
number of edges to the number of all possible edges, and Eg is the global 
efficiency. Thus, a binary matrix was obtained. Finally, the graph theory 
method was used to calculate the network metrics. Fig. 6 shows the 
average functional brain networks. As can be seen from the Figure, in the 
absence of grip strength, the network density of the frontal lobe in the 
happy session was higher than that in the neutral session; while 
compared with the neutral session, the network connections between 
the frontal, central and parietal lobes increased in the sad session. After 
the application of grip, some long-distance network connections 

Fig. 4. Average sample entropy distribution according to emotion and grip strength; (a) no grip strength (b) 5 kg (c) 10 kg (b) 15 kg. The color scale represents the 
value of the sample entropy. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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occurred in the brain network, such as the connection from the frontal 
lobe to the occipital lobe. In addition, increasing grip strength made the 
brain network more tightly connected. 

Fig. 7 shows the node degree of the brain network. It can be seen 
from graph a that when there is no grip, the frontal region had the 
largest node degree in the happy session, while the frontal, central and 
parietal regions had a larger node degree in the sad session. This is 
consistent with the analysis results of the network connectivity. In 
addition, it can be seen from the three graphs (b, c, and d) that the oc
cipital region had the largest node degree in the sad session, but with the 

increase in strength, this characteristic gradually decreased. 
Fig. 8 shows the global efficiency of the brain network. The results 

indicate that network global efficiency in the happy and sad sessions was 
higher than that in the neutral session. When grip strength was added, 
the global efficiency of the happy and sad sessions increased, but with 
the increase in grip strength, the global efficiency did not increase 
significantly, while the global efficiency of the normal session increased 
significantly. 

Fig. 5. Transfer entropy according to emotion and grip strength in EEG→EMG and EMG→EEG; (a, d) 5 kg, (b, e) 10 kg, (c, f) 15 kg, (g, h) comparison between 5 kg, 
10 kg and 15 kg. 
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4. Discussion and conclusions 

In this study, we mainly studied how the emotion-movement rela
tionship affected the cerebral cortex and CMC. For this, we used PSD, 
sample entropy, transfer entropy, and mutual information to build a 
functional brain network for analysis. 

PSD is commonly used for EEG frequency domain analyses to obtain 
the energy distribution of EEG signals with frequency variations. In this 
study, the average power distribution for 19 channels was displayed on a 
brain topographic map, which clearly showed changes in brain func
tional activities. We found that grip strength associated with both happy 
and sad emotions had a high impact on EEG power. The findings that 

Fig. 6. Average functional brain network according to emotion and grip strength.  
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happy emotions can increase the EEG power of the left frontal lobe and 
sad emotions can increase the EEG power of the right frontal lobe are 
consistent with the results of previous studies (Balconi and Mazza, 2010; 
Waldstein et al., 2000; Wheeler et al., 1993; Davidson and Henriques, 
2000). However, we also came to some other conclusions: with the in
clusion of grip strength, the frontal lobe EEG power of different emotions 
showed activation in specific areas, and the grip strength under neutral 
and happy emotions activated the EEG power of the right prefrontal 
lobe. On the other hand, the grip strength under sad emotions activated 
the EEG power of the left frontal lobe, similar to the f7 channel. In 
addition, grip strength was found to affect the EEG power. For the same 
emotion, the greater was the grip strength, the higher was the EEG 
power. 

The PSD study mainly focused on changes in the energy of EEG 
signals in different brain regions, which is a frequency domain analysis 
method. However, EEG signals are time-varying and non-stationary; 
therefore, a frequency-domain analysis alone is not sufficient. Sample 

entropy is a nonlinear analysis method that can be used to quantitatively 
describe changes in the EEG complex dynamic system and analyze EEG 
signals more comprehensively. At present, sample entropy has been 
widely used with EEG, EMG, and other biomedical signals to measure 
complexity. Sample entropy has been applied previously to sleep staging 
(Chouvarda et al., 2011), epilepsy detection (Shen et al., 2013), and 
Alzheimer’s disease diagnosis (Abásolo et al., 2006). In this study, the 
EEG sample entropy distribution of 19 channels was represented using a 
brain topographic map. Similar to many existing studies, different 
emotions caused changes in the sample entropy of the frontal lobe (Jie 
et al., 2014). Happy emotions mainly affected the left frontal lobe, while 
sad emotions mainly affected the right frontal lobe. In addition, we 
found that emotion and movement can combine to affect the complexity 
of the brain, and grip strength in happy emotions increased the 
complexity of the C3 channel. However, in sad emotion, it increased the 
complexity of the CZ channel, which led to an obvious difference in 
brain complexity between the two extreme emotions. Lastly, as the 
movement pattern (grip strength) increased, the complexity of the brain 
also increased. 

When the human body is moving, the cerebral cortex transmits in
formation to the muscle nerves, and the muscle supplies feedback to the 
cerebral cortex, demonstrating a two-way coupling process. In this 
study, transfer entropy was used to measure the strength of CMC. The 
results showed that the CMC strength of EEG→EMG and EMG→EEG in 
the happy and sad sessions was higher than that in the neutral session, 
and that the CMC strength of EEG→EMG was higher than that of 
EMG→EEG. This shows that happiness and sadness can promote the 
two-way transmission of information between the cerebral cortex and 
muscle nerves, and that the primary transmission of information occurs 
from the cortex to the muscle nerves. This may explain why people 
experiencing extreme emotions (extreme happiness or sadness) are more 
able to stimulate the body’s potential to do things that are otherwise 
difficult to accomplish. The results also showed that the CMC strength of 
EEG→EMG increased with the increase in force for all emotions, but that 
the CMC strength of EMG→EEG only increased for the neutral and sad 

Fig. 7. Node degree distribution for each node according to emotion and grip strength; (a) no grip strength (b) 5 kg (c) 10 kg (d) 15 kg.  

Fig. 8. Global efficiency of networks according to emotion and grip strength.  

X. Xi et al.                                                                                                                                                                                                                                        



Journal of Neuroscience Methods 362 (2021) 109320

10

sessions. 
Functional brain networks can be used to study the collective dy

namics of the brain. In this study, mutual information was used to 
calculate the correlation between each EEG signal. The grip strength 
associated with different emotions was found to affect nonlinear syn
chronization between the different brain regions. The results showed 
that the network connectivity of the brain was different under different 
emotions. The network connectivity of the frontal lobe increased under 
happy emotions, while the network connectivity between the frontal 
lobe, central lobe, and parietal lobe increased under sad emotions. This 
showed that different emotions could promote the exchange of infor
mation in specific brain regions. In addition, grip strength could produce 
some long-distance exchange of information in the brain regions, and 
the greater was the grip strength, the tighter was the connection of the 
brain network. 

The greater was the node degree, the greater was the role of the node 
in information transmission in the network. The results showed that the 
node degree of the frontal lobe was higher in the happy session, while 
the node degree of the frontal lobe, central lobe, and parietal lobe was 
higher in the sad session. This showed that different emotions have 
important effects on brain network nodes. From the results of network 
connectivity, we know that grip strength caused a long-distance 
connection between the occipital lobe and other brain regions, but we 
found that the node degree of the occipital lobe in sad emotions was 
higher than that in other emotions from the node degree results, and the 
difference gradually decreased with the increase in grip strength. This 
may indicate that the grip strength in sad emotion was more capable of 
producing this long-distance network connection to the occipital lobe, 
and this phenomenon became less obvious as the grip strength 
increased. 

This study also analyzed the global efficiency of the brain network, 
which is often used to measure the network’s ability to exchange in
formation. The results showed that the capacity to exchange information 
during the happy and sad sessions was higher than that during the 
neutral session. Additionally, with increasing grip strength, the capa
bility of transmitting information during the neutral session increased 
significantly, while changes during the happy and sad sessions were not 
as evident. 

In summary, this study is the first to combine emotions with human 
movement. We have selected the following findings as potentially 
helpful for understanding the mechanism of the emotion-movement 
relationship: happy emotions increased the power of the left frontal 
lobe, while sad emotions increased the power of the right frontal lobe. 
When movement is involved, the power of the right prefrontal lobe in 
happy emotions increased significantly, and the power of the left frontal 
lobe in sad emotions also increased. Movement associated with happy 
emotions can increase the complexity of the left hemisphere, while 
movement associated with sad emotions can increase the complexity of 
the right hemisphere. Movements associated with both happy and sad 
emotions increase the strength of two-way coupling between the cortex 
and muscles. Functional brain network analysis further demonstrated 
changes in the network metrics associated with different emotional 
states. The above findings were compared with those of the neutral 
session. Different movement patterns also led to different results. 
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